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Abstract

A detailed theoretical study of unsteady free convection boundary-layer ¯ow near the stagnation point of a two-
dimensional cylindrical surface embedded in a ¯uid-saturated porous medium is presented when the surface

temperature oscillates about a mean value above ambient. Both numerical and asymptotic solutions are employed to
solve the governing equations for general values of the frequency o and amplitude A of the surface temperature
oscillations. Results for the heat transfer rate, boundary-layer thickness and temperature pro®les are obtained for
both small and large values of A and also for slow and fast oscillations. It is found that outside the thin boundary

layer on the surface, a steady ¯ow is induced for large times and fast oscillations. This steady boundary-layer ¯ow is
studied in detail for large values of the amplitude A. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The role of convective ¯ows in ¯uid-saturated po-

rous media is now widely recognised to have important
consequences in a wide range of applications as varied
as geothermal ¯ows, ®bre and granular insulation and

catalytic reactors. Several excellent books and review
articles by Bejan [1], Nakayama [2], Kimura et al. [3],
Nield and Bejan [4] and Ingham and Pop [5] have
appeared recently dealing with this area, which review

the present understanding of the basic mechanisms
involved as well as showing how these impinge on the
practical applications. One of the most fundamental

components of models of convection in porous media
is the ¯ow, usually at high Rayleigh number, near an

impermeable surface generated by di�erences in tem-
perature between the surface and the surrounding me-
dium. Various sorts of surface conditions have been

considered, including prescribed temperature and pre-
scribed rates of heating and, more recently, the heating
resulting from a catalytic surface reaction [6±8]. Both

steady-state con®gurations as well as the transient
development of these ¯ows have been extensively
treated, the details are provided in Refs. [1±5], for
example.

These previous studies, while they have produced
many clear insights into the basic processes, have
almost invariably been concerned with temporally con-

stant surface conditions. It is not always the case that
the maintenance of such constant conditions is a re-
alistic assumption; often there are ¯uctuations about

some mean value. The in¯uence of temporal oscil-
lations in surface conditions on convective ¯ows in
porous media has received very little attention to date.
The purpose of the present paper is to make a start on

trying to understand this feature by treating a rela-
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tively simple, though basic, model problem. We con-

sider the high Rayleigh number (boundary-layer) natu-

ral convection ¯ow near a two-dimensional stagnation

point (thus allowing the governing equations to be

simpli®ed) and take sinusoidal oscillations in the pre-

scribed surface temperature about some mean value

Tw which is above the ambient temperature T1 of the

surrounding medium. We examine the e�ect of the

amplitude and frequency of these surface temperature

oscillations on the structure of the ¯ow, obtaining

asymptotic approximations for small amplitudes and

for both fast and slow oscillation modes. We comp-

lement these analytic results with numerical simu-

lations of the full problem for parameter values not

amenable to asymptotic analysis. This leads us to ®nd

that there is a maximum amplitude of the oscillations

about Tw for which a stagnation-point ¯ow is possible

with this maximum amplitude being strongly depen-

dent on the frequency of the oscillations, decreasing as

the frequency increases.

The physical situation considered in the present

paper is easily amenable to experiment and merits con-

sideration because of its possible application in auto-

matic control systems in porous media. A good

example of this model is the case of the physically rea-

listic boundary condition of mean uniform surface

heat ¯ux, which is known to produce non-uniform sur-

face temperatures. We note to this end that the ®rst

papers to study the e�ects of temperature oscillations

on free convection boundary layers in a Newtonian

(clear) ¯uid are those of Merkin [9], Kelleher and

Wang [10] and Brown and Riley [11]. The latter

authors discussed the problem of free convection over
a vertical semi-in®nite ¯at plate in a viscous (non-po-

rous) ¯uid with a prescribed dimensionless temperature
distribution of the form 1� E exp�iot�, where E� 1,
obtaining both numerical and asymptotic solutions
using (ox) as a parameter, where x � x 1=2 and x being

the dimensionless co-ordinate along the plate. They
found reasonable agreement between the numerically
computed and asymptotic (for ox large) values of the

disturbance heat transfer. The phase settled down to
its predicted value when ox ' 7 whereas agreement
between the amplitudes required the somewhat higher

values of ox ' 15.

2. Equations

We assume that Darcy's law is valid to describe the
¯ow within the porous medium, which we take to be

isotropic and homogeneous. If we also assume that the
Boussinesq approximation holds, then the equations
which govern the high Rayleigh number, unsteady con-
vective ¯ow (boundary-layer equations) near a cylindri-

cal surface are, from Merkin and Mahmood [7] and
Nield and Bejan [4], for example,

@u

@x
� @v
@y
� 0 �1�

u � gKb
n
�Tÿ T1�S�x� �2�

Nomenclature

A amplitude of the surface temperature oscil-
lations

f reduced stream function

g acceleration due to gravity
K permeability of the porous medium
l length scale

Q heat transfer rate
Ra Rayleigh number
S(x ) shape function

t time
T ¯uid temperature
Tw mean surface temperature
T1 ambient ¯uid temperature

DT temperature scale
u, v velocity components in the x- and y-direc-

tions, respectively

U0 velocity scale

x, y Cartesian co-ordinates along the cylindri-
cal surface and normal to it, respectively

a e�ective thermal di�usivity

b thermal expansion coe�cient
t reduced dimensionless time
y dimensionless temperature

n kinematic viscosity
d1 boundary-layer thickness
s ratio of composite material heat capacity

to convective ¯uid heat capacity
c stream function
o frequency of surface temperature oscil-

lations

Superscripts
' di�erentiation with respect to y or ~y

- dimensionless variables
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@ 2T

@y2
�3�

We solve Eqs. (1)±(3) subjected to the boundary con-

ditions

v � 0, T � T1 � DT�1� A sin ot� on y � 0,

T4T1 as y41 �t > 0�
�4�

u � v � 0, T � T1 at t � 0 �x, y > 0� �5�
where u and v are the velocity components (as given
by Darcy's law) in the x- and y-directions, respectively,

with x and y being co-ordinates measuring distance
along and normal to the body surface, t is time, a is
the equivalent thermal di�usivity, n the kinematic vis-

cosity of the convective ¯uid, s the heat capacity ratio,
K the permeability, b the coe�cient of thermal expan-
sion. DT � Tw ÿ T1 is some temperature scale, and o
is the frequency and A the amplitude of the surface

temperature oscillations. S�x� � sin f, where f is the
angle between the outward normal from the body sur-
face and the downward vertical. For our model of a

two-dimensional stagnation-point ¯ow, we have

S�x� � x

l
, �6�

where l is some length scale. We make Eqs. (1)±(5)

dimensionless using a velocity scale

U0 � gbKDT
n

, �7�

with Rayleigh number Ra � gbKDTl=na and then

writing

u � U0 �u, v � U0Ra
ÿ1=2 �v, �x � x

l
,

�y � Ra1=2
y

l
, �t � U0

sl
t, �o � sl

U0
o,

y � �Tÿ T1�
DT

�8�

This leads to the equations, on using Eq. (6) and drop-
ping the bars for convenience,

@u

@x
� @v
@y
� 0 �9�

u � xy �10�

@y
@ t
� u

@y
@x
� v

@y
@y
� @ 2y
@y2

�11�

We can combine Eqs. (9) and (11) by writing

c � xf�y, t�, y � y�y, t� �12�

where c is the stream function which is de®ned in the
usual way, namely u � @c=@y, v � ÿ@c=@x, to give

y � @ f=@y. This leads ®nally to the equation for our
model of stagnation-point ¯ow as

@ 3f

@y3
� f

@ 2f

@y2
� @ 2f

@y @ t
�13�

with boundary and initial conditions (4) and (5)
becoming

f � 0,
@ f

@y
� 1� A sin ot on y � 0,

@ f

@y
40, as y41 �t > 0�

f � 0 at t � 0 �y > 0� �14�
We note that, without any loss in generality, we need

only consider the case Ar0.
We characterise our solution in terms of a surface

heating (dimensionless) Q and a boundary-layer thick-
ness d1 de®ned by

Q � ÿ
�
@y
@y

�
y�0
� ÿ

 
@ 2f

@y2

!
y�0

,

d1 �
�1
0

u dy � f�1, t�
�15�

3. Solution

The initial development of the solution follows the
usual form for impulsively heated surfaces, giving, see

Ref. [12],

Q0 1���
p
p tÿ1=2 � � � � ,

d10
2���
p
p t1=2 � � � � for small t

�16�

The details are straightforward and are not of particu-

lar interest for our present purposes. We are concerned
here with determining the behaviour of the solution
for large times, for which Eqs. (13) and (14) have to be

solved numerically for general values of the parameters
A and o. This can easily be achieved using standard
methods [13,14]. We give results for three representa-

tive cases in Fig. 1, namely A � 0:2, o � 1:0; A � 0:4,
o � 0:25 and A � 0:5, o � 4:0. In all the three cases
the ultimate response is oscillatory with the same fre-
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quency as the applied wall temperature, though slightly

out of phase with it. Q attains its maximum/minimum

values before the corresponding turning points in the

wall temperature, whereas d1 attains these values

slightly afterwards. The amplitude of the response

increases with A (as would be expected) with the

amplitude being dependent on o. For Q we ®nd that

the larger the value of o (the faster the oscillations)

the larger the amplitude for a given value of A.

Negative values of Q are possible for su�ciently large

values of A (see Fig. 1(c)). For d1 the opposite holds,

with the larger responses being seen as o is decreased

(slower oscillations). A further feature to note is that

the oscillations in Q and d1 are about a mean value

which is above (for Q ) and below (for d1) the steady

(A � 0) case (for which Q � 0:6276 and d1 � 1:143).

This e�ect increases with A for a given frequency.

As A is increased a value is reached (dependent on

o) at which the solution breaks down. In these cases

we ®nd that there is still an oscillatory response (with

the same frequency as the wall temperature) in a

region close to the wall. However, now the boundary

layer thickens (relatively quickly) with t and a situation

is reached where the outer boundary condition is no

longer satis®ed by the numerical solution. Increasing

sizes of spatial domain were tried in these compu-

tations and, in each case, the boundary layer thickness

was seen to keep increasing with t. This point will be

addressed in a little more detail below.

Further insights into the nature of the solution can

Fig. 1. Plots of heat transfer rate Q and boundary-layer thickness d1 against t obtained from numerical solutions of Eq. (13) subject

to Eq. (14), plotted after the initial transients have died out, for (a) A � 0:2, o � 1:0; (b) A � 0:4, o � 0:25 and (c) A � 0:5,
o � 4:0.
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be gained from expansions for small amplitude

(A� 1) and for fast (o� 1) and slow (o� 1) oscil-
lations. We restrict our attention entirely to the large
time behaviour, after all transients have died out, in
these solutions. We ®nd it more convenient to rescale t

by writing t � ot, so that Eq. (13) becomes

@ 3f

@y3
� f

@ 2f

@y2
� o

@ 2f

@y @t
�17�

with boundary condition (14), on y � 0, becoming

@ f

@y
� 1� A sin t �18�

We start by obtaining a solution valid for A small.

3.1. Small amplitude, A� 1

Boundary condition (18) suggests looking for a sol-
ution valid for A� 1 by expanding in the form

f�y, t� � f0�y� � A
ÿ
g1�y�sin t� h1�y�cos t

�� � � � �19�

where f0 satis®es

f 0000 � f0 f
00
0 � 0,

f0�0� � 0, f 00 �0� � 1, f 00�1� � 0
�20�

where primes denote di�erentiation with respect to y.
Eq. (20) is a standard free convection boundary-layer
problem [15] having f 000 �0� � ÿ0:62756,
f0�1� � 1:14277.
The equations satis®ed by g1 and h1 are linear,

namely

Fig. 1 (continued)

J.H. Merkin, I. Pop / Int. J. Heat Mass Transfer 43 (2000) 611±621 615



g 0001 � f0g
00
1 � f 000 g1 � ÿoh 01

h 0001 � f0h
00
1 � f 000 h1 � og 01 �21�

subject to

g1�0� � 0, g 01�0� � 1, g 01�1� � 0,

h1�0� � 0, h 01�0� � 0, h 01�1� � 0
�22�

Eqs. (21) and (22) have to be solved numerically. This
is easily achieved using a standard boundary-value

problem solver and the results (plots of ÿg 001 �0� and
ÿh 001 �0� against o) are shown in Fig. 2(a).
The terms at O(A ) are both oscillatory. These give

rise, at O�A2�, to oscillatory terms in sin 2t and cos 2t
[9] as well as a further steady component f2�y�, which
satis®es

f 0002 � f0 f
00
2 � f 000 f2 � ÿ1

2

ÿ
g1g
00
1 � h1h

00
1

�
f2�0� � 0, f 02�0� � 0, f 02�1� � 0

�23�

Eq. (23) can also be easily solved numerically and a

graph of f 002 �0� plotted against o is shown in Fig. 2(b).
This ®gure shows that f 002 �0� is negative for all o (and
we ®nd that f2�1� is also negative) in line with the

results from the numerical integrations.
We can determine the behaviour of the solution of

Eqs. (21) and (22), respectively, for both o small and

large. For small o (<<1) the solution is regular, with

g1�y� � G0�y� � o2G2�y� � � � � ,

h1�y� � oH1�y� � � � �
�24�

where, on substituting Eq. (24) into Eq. (21) and

Fig. 1 (continued)
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equating like powers of o, we ®nd that
G0 � 1

2 �yf 00 � f0�, giving G 0000 �0� � 3
2 f
00
0 �0� � ÿ0:94133,

and then H1 satis®es

H 0001 � f0H
00
1 � f 000H1 � 1

2

ÿ
yf 000 � 2 f 00

�
,

H1�0� � 0, H 01�0� � 0, H 01�1� � 0

�25�

The numerical solution of this problem gives
H 001 �0� � ÿ0:44434. The form of solution for o small
given by Eqs. (24) and (25) can be seen in Fig. 2(a).

The consequence of expansion (24) for f2, the steady
contribution at O�A2�, is that, at leading order, f2
satis®es Eq. (23) with the right-hand side replaced by

ÿ 1
2G0G

00
0 . The solution to this problem gives f 002 �0�0

ÿ0.11767+O(o2) as o40 in line with Fig. 2(b).
For large o (>>1) the solution for g1 and h1 becomes

con®ned to a thin region, of O�oÿ1=2� thickness, in
which we put

g1 � oÿ1=2 ~g1, h1 � oÿ1=2 ~h1, ~y � o1=2y �26�

We express f0 as f00yÿ a0
2 y

2 � � � � (where

a0 � 0:62756) and, with this, the substitution of Eq.
(26) into Eq. (21) gives, at leading order,

~g 0001 � ~h
0
1 � 0, ~h

000
1 ÿ ~g 01 � 0

~g1�0� � 0, ~g 01�0� � 1, ~g 01�1� � 0,

~h1�0� � 0, ~h
0
1
�0� � 0, ~h

0
1�1� � 0

�27�

primes now denote di�erentiation with respect to yÄ.

The solution of Eq. (27) gives

~g 01 � exp
ÿ
ÿ ~y=

���
2
p �

cos
ÿ

~y=
���
2
p �

,

~h
0
1 � ÿexp

ÿ
ÿ ~y=

���
2
p �

sin
ÿ

~y=
���
2
p � �28�

from which we obtain

g 001 �0�0ÿ
o1=2���

2
p � � � � ,

h 001 �0�0ÿ
o1=2���

2
p � � � � as o41

�29�

Expressions (29) are also shown in Fig. 2(a) (by the

broken line). We note that, combining expressions (28)
in expansion (19), gives the O(A ) term as

ÿexp
ÿ
ÿ ~y=

���
2
p �

sin
ÿ

~y=
���
2
p
ÿ t

�
as o41 �30�

The consequence of transformation (26) for f2, as
given by Eq. (23), is that f2 is O�oÿ3=2� for o large.

Putting f2 � oÿ3=2 ~f2, we ®nd that ~f2 satis®es the
equation, on using Eqs. (27) and (28),

~f
000
2 �

1

2
exp

ÿ
ÿ ~y=

���
2
p �

sin
ÿ

~y=
���
2
p �

�31�

Integrating this, with the condition that ~f
0�0� � 0, gives

~f
0
2 � ÿ

1

2

ÿ
1ÿ exp

ÿ
ÿ ~y=

���
2
p �

cos
ÿ

~y=
���
2
p ��

with ~f
00
2
�0� � ÿ 1

2
���
2
p

�32�

Hence f 002 �0�0ÿ oÿ1=2

2
��
2
p � � � � as o41.

Expression (32) for ~f
0
2 does not satisfy the required

outer boundary condition and a further outer region is
needed to achieve this. We do into pursue this further
at this stage but turn to looking for asymptotic sol-

Fig. 2. (a) Plots of ÿg 001 �0� and h 001 �0� against o obtained from

the numerical solution of Eqs. (21) and (22). The asymptotic

expression Eq. (29) for o large is shown by the broken line.

(b) A plot of f 002 �0�, the steady contribution at O�A2�, obtained
from the numerical solution of Eq. (23).
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utions valid for o both small and large with A of O�1�,
where the details of this outer region will emerge.

3.2. o small (slow oscillations)

The solution derived in the previous section for
small o suggests that, to obtain a solution of Eqs. (17)
and (18) with A of O(1) valid for o� 1, we should

put

f � �1� A sin t�1=2f0�Y�, Y � �1� A sin t�1=2y �33�

The substitution of Eq. (33) into Eqs. (17) and (18)
gives, at leading order, the problem given by Eq. (20)
for f0 (now in terms of the transformed variable Y ).

From which it follows that

Q00:62756�1� A sin t�3=2� � � � ,

d101:1428�1� A sin t�1=2� � � � as o40

�34�

We note that expression (34) agrees with the small A
solution, as given by Eq. (19), to O�A�. Expressions
(34) show that, for o small at least, the response in

both Q and d1 is oscillatory with the same fre-
quency as the applied wall temperature (as borne
out by the numerical integrations, see Fig. 1(b)).

The amplitude of the response in Q, namely
0:62756��1� A�3=2 ÿ �1ÿ A�3=2�, is generally larger, for
a given A, than the amplitude of the oscillations in d1,
namely 1:1428��1� A�1=2 ÿ �1ÿ A�1=2�. We illustrate
this with a speci®c example of A � 0:4 where these ex-
pressions for the amplitude give 0.7479 and 0.4670, re-

spectively (compare with Fig. 1(b), for which the
numerically computed values are, respectively, 0.763
and 0.442).
The solution for small o, as given by Eqs. (33) and

(34), holds only for A < 1. This puts a limit, in this
parameter regime, for which a solution to Eq. (13)
which satis®es boundary condition (14) for all t is

possible. We examined the behaviour of the solution
to this problem numerically, taking a small value for o
of o � 0:1 and a value for A > 1, namely A � 1:4. For
these parameter values we were unable to keep satisfy-
ing the outer boundary condition as t increased with
the numerical solution becoming unreliable after a
®nite time had elapsed (this time depend on the size of

the computational domain). We illustrate the results in
Fig. 3(a), where we show a temperature pro®le plot of
y � @ f=@y at t � 142. This has an oscillatory region

near the wall, as demonstrated by the plot of Q for
this case shown in Fig. 3(b), and an increasingly large
region where @ f=@y is negative and non-oscillatory.

The numerical integrations for this (and cases where
similar behaviour is seen) show that, when the wall
temperature oscillates to negative values, this produces

a steady and negative component in temperature y �
@ f=@y a small distance from the wall. This then gives

rise to a very rapidly increasing region where @ f=@y 6�
0 to give temperature pro®les like those shown in Fig.
3(a). This is not the case when A < 1, where the outer

boundary condition can be satis®ed with su�cient ac-
curacy in the computations for very large values of t.
We discuss this aspect more later, but now we turn to

obtain a solution valid for large o.

3.3. o large (fast oscillations)

The solution for o large and A small described
above suggests that, to obtain a solution to Eqs. (17)
and (18) valid for o large and for general values of A,

we should start in a thin inner region of thickness
O�oÿ1=2� in which we put

f � oÿ1=2F, ~y � o1=2y �35�

Transformation (35) applied to Eq. (17) leads to

@ 3F

@ ~y3
ÿ @ 2F

@ ~y @t
� ÿoÿ1F@

2F

@ ~y2

with
@F

@ ~y
� 1� A sin t on ~y � 0

�36�

The form of the boundary condition suggests that the
solution is, at leading order,

F0

ÿ
~y, t

� � ~F0

ÿ
~y
�� A

�
~g1
ÿ

~y
�
sin t� ~h1

ÿ
~y
�
cos t

�
�37�

where ~F0 � ~y and where ~g1 and ~h1 have been given

already in Eq. (28).
The outer solution described below leads to a steady

O�oÿ1=2� contribution ~F1 � ÿa0 ~y2

2 in the inner region.

At O�oÿ1� we have oscillatory contributions in sin 2t
and cos 2t as well as a steady contribution given by

~F
0
2 � ÿ

A2

2

ÿ
1ÿ exp

ÿ
ÿ ~y=

���
2
p �

cos
ÿ

~y=
���
2
p ��

�38�

Expression (38) gives a contribution of A2

2
��
2
p oÿ1=2 to the

mean in the oscillations of Q, and from Eqs. (28), (35)
and (37) we have

Q0o1=2A sin

�
t� p

4

�
� a0 � � � � as o41 �39�

At the outer edge of the inner region we have, from

Eqs. (37) and(38), that

f0yÿ a0
2
y2 � � � � � oÿ1

�
ÿ A2

2
y� � � �

�
� � � � �40�

This suggests looking for a steady solution to Eqs. (17)
and (18) in the form
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Fig. 3. (a) A plot of the temperature pro®le y � @ f=@y at t =142 for A =1.2, o � 0:1 obtained from the numerical integration of

Eqs. (13) and (14); (b) a plot of Q against t for the above parameter values; (c) a pro®le plot of y � @ f=@y at t � 11:6 for A � 2:5,
o � 1:0.
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f�y� � f0�y� � oÿ1f1�y� � � � � �41�

where f0 satis®es (20) and where f1 � ÿA2

4 �yf 00 � f0�.
From Eqs. (35), (37) and (41) we then have

d101:1428� oÿ1=2A sin

�
tÿ p

4

�
� � � �

as o41
�42�

3.4. Large amplitude, A� 1

The numerical integrations show that there is a
value Amax of A such that solutions to initial-value
problem (Eqs. (13) and (14)) which are bounded for all

t do not exist for A > Amax (see Fig. 3(a)). Amax

depends on o and we have been able to establish that
Amax41 as o40. The numerical integrations show

that Amax increases with o and the large o analysis
does not provide an obvious upper bound on A. We
have already shown these unbounded solutions for o
small (Fig. 3(a),(b)) and illustrate their dependence on
o for the further case of o � 1:0, taking A � 2:5. A
temperature pro®le plot of y � @ f=@y for this case is
shown in Fig. 3(c). For o � 1:0 we ®nd bounded sol-

utions for all A up to A � 1:95 but not for A � 2:0.
Bounded solutions are possible for A large provided

o is also large, of O�A2�. If we put o � o0A
2, where

o0 is of O(1), and then ~Y � Ay (leaving f unscaled) we
arrive at the leading order problem for A large

@ 3f

@ ~Y
3
� o0

@ 2f

@ ~Y@t
,

@ f

@ ~Y
� sin t on ~Y � 0 �43�

The solution to Eq. (43) is standard
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with o of O�A2�, which compares directly with ex-
pression (39) derived only on the assumption that o
was large.
If we now take o to be only of O(A ), i.e., we put

o � o1A, and then scale f � A1=2F̂, Ŷ � A1=2y, we

obtain, at leading order, the problem given by Eq. (17)
with o replaced by o1, and now subject to, at leading
order, @ F̂=@ Ŷ� sin t on Ŷ � 0. A bounded solution to

this problem, valid for o1, large, can be obtained
essentially in the same form as for the o large solution

given above (see Eqs. (26)±(28), (36) and (37)), and we
get

Q0A3=2o1=2
1 sin

�
t� p

4

�
� :::

as o141, o of O�A�
�46�

In this limit Eq. (46) agrees with (45). However, nu-

merical solutions to the problem show that a bounded
solution does not exist for all o1 with there being a
lower bound on o1 for the existence of such solutions.

This suggests that Amax is of O�o� for o large.
The main feature of the solution for A > Amax is

that the oscillations in the wall temperature generate a

steady (negative) response in the stream function f so
that, after a relatively few oscillations, f0ÿ gy, for
some positive constant g which will depend on o and
A, at the edge of the oscillatory region. This then acts

to set up a rapidly growing outer region in which the
stream function f is non-oscillatory. A further con-
sideration of this region shows that its behaviour is

strictly analogous to the boundary-layer collision
region at the top of a horizontal cylinder described in
detail by Ingham et al. [16]. The details are essentially

the same (apart from an obvious scaling factor) and
need not be repeated. The main features are that the
thickness of the boundary layer grows at an exponen-
tial, O�egt� rate behind a propagating front structure

which spreads at an O�t1=2� rate. This e�ect can be
seen as the numerical solutions evolve and is suggested
by the pro®le plots in Fig. 3(a) and (c).

4. Conclusion

The problem of unsteady free convection boundary-
layer ¯ow near a stagnation-point of a two-dimen-

sional cylindrical surface in a porous medium has been
studied when the surface temperature oscillates around
a mean value Tw above ambient. Since non-uniform

surface temperature variations are more likely to occur
in practice than uniform conditions, it is important to
determine the extent to which these non-uniformities
a�ect the boundary-layer responses. In order to gain

some insight into the basic heat transfer mechanism,
numerical and asymptotic solutions of the governing
equations have been obtained for both small and large

values of the amplitude parameter A and for both slow
and fast oscillations, i.e. small and large values of the
frequency parameter o. For small amplitude oscil-

lations (A� 1), the response remains small, of O(A ),
and oscillatory with the same frequency of the oscil-
lations in the surface temperature, though a small
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phase shift is seen. This is, perhaps, to be expected
from previous studies [10,11].

For fast oscillations (o large) there is still an oscil-
latory response (at the same frequency as the surface
temperature) but now this is con®ned to a thin region

close to the wall. In this case the oscillations in surface
temperature set up a steady outer ¯ow, though still
remaining within the overall boundary-layer region.

For slow oscillations (o small), it was seen that the re-
sponse in heat transfer rate Q and boundary-layer
thickness d1 is also oscillatory with the same frequency

as the applied wall temperature distribution when
A < 1. However, for A > 1 the numerical results show
that, while the solution near the wall remains oscil-
latory, a region develops in which there is a steady

temperature below ambient and which propagates
rapidly away from the wall. This leads to the general
conclusion that there is a value Amax of A such that

solutions to the governing equations, which are
bounded for all times, do not exist when A > Amax. We
have shown that Amax41 as o40 and that Amax

increases with o with the o� 1 analysis not providing
an obvious upper bound on A. A more detailed con-
sideration of the solutions for A > Amax shows that the

oscillation in the surface temperature generates a
steady (negative) ¯ow region that is similar to the tran-
sient free convection boundary-layer region at the top
of a horizontal cylinder embedded in a porous medium

which is impulsively heated, as described by Ingham et
al. [16].
The practical importance of the present study is that

it presents for the ®rst time means of estimating the
heat transfer rate from a surface whose temperature
oscillates in time and which is embedded in a porous

medium. It is hoped that experimental data of this new
type of driven convective ¯ow in porous media will
become available in the future to justify the present
theoretical results.
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